organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Iodo-1*H*-pyrrole-2-carbaldehyde

Rohan A. Davis, Anthony R. Carroll, Ronald J. Quinn, Peter C. Healy* and Alan R. White

Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111, Australia Correspondence e-mail: p.healy@griffith.edu.au

Received 12 September 2007; accepted 12 September 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.026; wR factor = 0.068; data-to-parameter ratio = 20.3.

The title compound, C5H4INO, was synthesized during research aimed at producing suitable halogenated pyrrole building blocks for Suzuki-Miyaura coupling reactions. In the crystal structure, the molecules are planar and exhibit N- $H \cdots O$ bonding to form centrosymmetric dimers.

Related literature

For related literature, see: Davis et al. (2002); Mitsui et al. (2003); Miyaura & Suzuki (1995); Monti & Sleiter (1990); Smith et al. (1985); Sonnet (1972).

Experimental

Crystal data

C₅H₄INO $M_r = 220.99$ Monoclinic, $P2_1/c$ a = 10.245 (3) Å b = 4.726 (2) Å c = 13.531 (4) Å $\beta = 92.73 \ (2)^{\circ}$

V = 654.4 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 4.79 \text{ mm}^{-1}$ T = 295 (2) K $0.40\,\times\,0.40\,\times\,0.15$ mm

Data collection

Rigaku AFC-7R diffractometer
Absorption correction: ψ -scan
(North et al., 1968)
$T_{\min} = 0.250, \ T_{\max} = 0.533$
(expected range = 0.229-0.487)
1793 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ 74 parameters $wR(F^2) = 0.068$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$ S = 1.11 $\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$ 1505 reflections

1505 independent reflections

3 standard reflections every 150 reflections intensity decay: 1.8%

 $R_{\rm int} = 0.018$

1281 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^i$	0.88	2.00	2.843 (5)	161
C5-H5···O2 ⁱⁱ	0.95	2.50	3.400 (5)	158

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/ AFC7 Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN and PLATON (Spek, 2003).

The authors acknowledge financial support of this work by Griffith University and the Eskitis Institute for Cell and Molecular Therapies.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2326).

References

Davis, R. A., Carroll, A. R. & Quinn, R. J. (2002). Aust. J. Chem. 55, 789-794. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Mitsui, T., Kimoto, M., Sato, A., Yokoyama, S. & Hirao, I. (2003). Bioorg. Med. Chem. Lett. 13, 4515-4518.

- Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
- Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control Software. Version 1.02 for Windows. MSC, The Woodlands, Texas, USA.
- Molecular Structure Corporation (2001). TEXSAN. Version 1.06 for Windows. MSC, The Woodlands, Texas, USA.
- Monti, D. & Sleiter, G. (1990). Gazz. Chim. Ital. 120, 771-774.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Smith, K. M., Bobe, F. W., Minnetian, O. M., Hope, H. & Yanuck, M. D. (1985). J. Org. Chem. 50, 790-792.
- Sonnet, P. E. (1972). J. Org. Chem. 37, 925-929.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4076 [doi:10.1107/S1600536807044534]

4-Iodo-1*H*-pyrrole-2-carbaldehyde

R. A. Davis, A. R. Carroll, R. J. Quinn, P. C. Healy and A. R. White

Comment

The title compound, (I), (Fig. 1) was synthesized during research aimed at producing suitable halogenated pyrrole building blocks for Suzuki–Miyaura coupling reactions (Miyaura & Suzuki, 1995; Davis *et al.*, 2002). Although compound (I) has been previously synthesized using a variety of methods (Mitsui *et al.*, 2003; Monti & Sleiter 1990; Sonnet, 1972) this is the first report of the X-ray crystal structure for 4-iodo-1*H*-pyrrole-2-carbaldehyde. As observed for related structures (Smith *et al.*, 1985), the molecules are planar and exhibit N—H···O bonding to form centrosymmetric dimers (Fig. 2).

Experimental

The commercial reagent pyrrole-2-carbaldehyde (475 mg, 5 mmol) was added to an argon charged two-necked flask (50 ml) to which dry THF (20 ml) was added and the mixture stirred for 10 min before being cooled to 195 K. *N*-iodosuccinimide (1.12 g, 5 mmol) was added portionwise over 15 min then the mixture was stirred at 195 K for 1 h before being transferred to a 258 K refrigerator for 16 h. The solvent was removed under vacuum and the material was partitioned between H₂O (50 ml) and DCM (2 *x* 50 ml). The organic phase was dried (MgSO₄), then the DCM was evaporated under reduced pressure. The resulting residue was dissolved in DMSO (10 ml) then chromatographed over a C₁₈ flash column (40 mm *x* 80 mm) using 10% stepwise elutions from 20% MeOH/80% H₂O to 100% MeOH. The 70% MeOH/30% H₂O elution contained a 9:1 mixture of 4-iodo-1*H*-pyrrole-2-carbaldehyde and 5-iodo-1*H*-pyrrole-2-carbaldehyde (165 mg), which proved to be inseparable by reversed-phase HPLC. Fractional crystallization using DCM/hexanes produced pure 4-iodo-1*H*-pyrrole-2-carbaldehyde (72 mg, 6.5% yield). Low yielding di-iodinated and tri-iodinated pyrrole derivatives were also detected during the purification work however no crystalline material was obtained for these compounds. NMR assignments for compound (I) were determined following analysis of the one-dimensional and two-dimensional NMR (1*H*, 13 C, gCOSY, gHSQC, gHMBC) data.

4-iodo-1*H*-pyrrole-2-carbaldehyde (I): clear needles, m.p. 390–391 K. ¹H NMR (DMSO-d₆, 600 MHz) δ 7.12 (1*H*, s, H-3), 7.33 (1*H*, s, H-5), 9.43 (1*H*, s, 2-CHO), 12.37 (1*H*, br s, 1-NH). ¹³C NMR (DMSO-d₆, 150 MHz) δ 62.7 (C-4), 126.0 (C-3), 131.3 (C-5), 134.4 (C-2), 178.7 (2-CHO). (-)-LRESIMS (*rel.* int.) m/z 220 (100%) [M—H, C₅H₃INO]⁻.

Refinement

The carbon-bound H atoms were constrained as riding atoms with C—H = 0.95-0.96 Å. The pyrrole proton was located in a difference Fourier synthesis and constrained with N—H = 0.88 Å. $U_{iso}(H)$ values were set at $1.2U_{eq}$ of the parent atom.

Figures

Fig. 1. View of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2. View of the centrosymmetric dimers of (I).

4-iodo-1*H*-pyrrole-2-carbaldehyde

Crystal data	
C ₅ H ₄ INO	$F_{000} = 408$
$M_r = 220.99$	$D_{\rm x} = 2.243 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 10.245 (3) Å	$\theta = 12.5 - 16.3^{\circ}$
b = 4.726 (2) Å	$\mu = 4.79 \text{ mm}^{-1}$
c = 13.531 (4) Å	T = 295 (2) K
$\beta = 92.73 \ (2)^{\circ}$	Plate, colourless
$V = 654.4 (4) \text{ Å}^3$	$0.40\times0.40\times0.15~mm$
Z = 4	

Data collection

Rigaku AFC-7R diffractometer	$R_{\rm int} = 0.018$
Radiation source: Rigaku rotating anode	$\theta_{max} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.0^{\circ}$
T = 295 K	$h = -13 \rightarrow 13$
$\omega/2\theta$ scans	$k = -2 \rightarrow 6$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	<i>l</i> = −7→17
$T_{\min} = 0.250, \ T_{\max} = 0.533$	3 standard reflections
1793 measured reflections	every 150 reflections
1505 independent reflections	intensity decay: 1.8%

1281 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.026$	$w = 1/[\sigma^2(F_o^2) + (0.0254P)^2 + 0.8517P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.068$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.11	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
1505 reflections	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
74 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001Fc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0057 (6)

methods

Secondary atom site location: difference Fourier map

Special details

Experimental. The scan width was $(1.79 + 0.30 \tan \theta)^{\circ}$ with an ω scan speed of 16° per minute (up to 5 scans to achieve I/ σ (I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodness of fit values S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
I1	0.10101 (3)	0.11438 (6)	0.17038 (2)	0.0593 (1)
O2	0.4065 (3)	0.9850 (9)	-0.1241 (2)	0.0696 (10)
N1	0.3783 (3)	0.6731 (8)	0.0582 (2)	0.0536 (10)
C2	0.2945 (4)	0.6628 (9)	-0.0239 (3)	0.0521 (13)
C3	0.1952 (4)	0.4801 (10)	-0.0045 (3)	0.0531 (11)
C4	0.2196 (4)	0.3788 (8)	0.0908 (3)	0.0490 (11)
C5	0.3333 (4)	0.5006 (10)	0.1282 (3)	0.0547 (13)
C21	0.3154 (4)	0.8263 (11)	-0.1112 (3)	0.0601 (14)
H1	0.45070	0.77370	0.06420	0.0630*
H2	0.25140	0.80760	-0.16460	0.0710*
H3	0.12300	0.42850	-0.04790	0.0630*
Н5	0.37100	0.46580	0.19280	0.0640*

supplementary materials

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0656 (2)	0.0567 (2)	0.0560 (2)	0.0093 (1)	0.0078 (1)	0.0053 (1)
O2	0.0663 (18)	0.096 (2)	0.0456 (15)	-0.0168 (18)	-0.0061 (13)	0.0071 (17)
N1	0.0476 (16)	0.071 (2)	0.0417 (16)	0.0030 (16)	-0.0029 (13)	-0.0036 (16)
C2	0.053 (2)	0.065 (3)	0.0376 (17)	0.0046 (19)	-0.0053 (15)	-0.0039 (17)
C3	0.053 (2)	0.062 (2)	0.0435 (19)	-0.0021 (19)	-0.0067 (16)	-0.0025 (19)
C4	0.0533 (19)	0.052 (2)	0.0418 (18)	0.0109 (17)	0.0035 (15)	-0.0023 (17)
C5	0.056 (2)	0.069 (3)	0.0387 (18)	0.013 (2)	-0.0017 (16)	-0.0012 (19)
C21	0.058 (2)	0.081 (3)	0.0404 (19)	-0.008(2)	-0.0070 (16)	0.002 (2)

Geometric parameters (Å, °)

2.079 (4)	C2—C21	1.436 (6)
1.216 (6)	C3—C4	1.387 (6)
1.372 (5)	C4—C5	1.374 (6)
1.348 (5)	С3—Н3	0.9500
0.8800	С5—Н5	0.9500
1.369 (6)	С21—Н2	0.9600
3.853 (4)	C4…I1 ^{vii}	3.853 (4)
3.812 (5)	C5…I1 ^{vii}	3.812 (5)
3.8646 (17)	C5…O2 ^{viii}	3.400 (5)
3.8646 (17)	C21···H1 ^{vi}	3.0900
3.3200	C21···H5 ^v	2.9100
2.900 (5)	H1…O2	2.7500
3.400 (5)	H1···O2 ^{vi}	2.0000
2.843 (5)	H1···C21 ^{vi}	3.0900
2.0000	H2…I1 ^{ix}	3.3200
2.7500	H2···H5 ^v	2.5700
2.5000	H5…O2 ^{viii}	2.5000
2.900 (5)	H5…C21 ^{viii}	2.9100
2.843 (5)	H5…H2 ^{viii}	2.5700
109.0 (3)	C3—C4—C5	108.1 (4)
125.00	N1—C5—C4	107.9 (3)
126.00	O2—C21—C2	126.5 (4)
122.3 (4)	С2—С3—Н3	127.00
108.0 (4)	С4—С3—Н3	126.00
129.7 (4)	N1—C5—H5	128.00
107.1 (4)	С4—С5—Н5	124.00
124.6 (3)	O2—C21—H2	117.00
127.2 (3)	C2—C21—H2	117.00
0.0 (5)	C3—C2—C21—O2	-179.7 (5)
179.5 (4)	C2—C3—C4—I1	175.5 (3)
-0.1 (5)	C2—C3—C4—C5	0.0 (5)
	2.079 (4) 1.216 (6) 1.372 (5) 1.348 (5) 0.8800 1.369 (6) 3.853 (4) 3.812 (5) 3.8646 (17) 3.8646 (17) 3.3200 2.900 (5) 3.400 (5) 2.843 (5) 2.0000 2.7500 2.900 (5) 2.843 (5) 109.0 (3) 125.00 126.00 122.3 (4) 108.0 (4) 129.7 (4) 107.1 (4) 124.6 (3) 127.2 (3) 0.0 (5) 179.5 (4) -0.1 (5)	2.079 (4) $C2-C21$ 1.216 (6) $C3-C4$ 1.372 (5) $C4-C5$ 1.348 (5) $C3-H3$ 0.8800 $C5-H5$ 1.369 (6) $C21-H2$ 3.853 (4) $C4\cdots I1^{vii}$ 3.812 (5) $C5\cdots I1^{vii}$ 3.8646 (17) $C5\cdots O2^{viii}$ 3.8646 (17) $C21\cdots H1^{vi}$ 3.3200 $C21\cdots H5^{v}$ 2.900 (5) $H1\cdots O2^{vi}$ 2.843 (5) $H1\cdots C21^{vi}$ 2.0000 $H2\cdots I1^{ix}$ 2.7500 $H2\cdots H5^{v}$ 2.5000 $H5\cdots O2^{viii}$ 2.843 (5) $H5\cdots C21^{viii}$ 2.900 (5) $H5\cdots C2^{viii}$ 2.900 (5) $H5\cdots C2^{viii}$ 2.900 (5) $H5\cdots C2^{viii}$ 2.900 (5) $H5\cdots C2^{viii}$ 2.900 (5) $C3-C4-C5$ 125.00 $N1-C5-H5$ 126.00 $O2-C21-C2$ 122.3 (4) $C2-C3-H3$ 108.0 (4) $C4-C3-H3$ 129.7 (4) $N1-C5-H5$ 124.6 (3) $O2-C21-H2$ 0.0 (5) $C3-C2-C21-O2$

N1-C2-C3-C4	0.0 (5)	I1—C4—C5—N1	-175.6 (3)
C21—C2—C3—C4	-179.4 (4)	C3—C4—C5—N1	0.1 (5)
N1—C2—C21—O2	1.1 (7)		

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) –*x*, *y*-1/2, –*z*+1/2; (iii) –*x*, *y*+1/2, –*z*+1/2; (iv) *x*, –*y*+1/2, *z*+1/2; (v) *x*, –*y*+3/2, *z*-1/2; (vi) –*x*+1, –*y*+2, –*z*; (vii) *x*, *y*+1, *z*; (viii) *x*, –*y*+3/2, *z*+1/2; (ix) *x*, –*y*+1/2, *z*-1/2.

II	1	18	0)
пуагодеп-оопа	geometry	(A,	

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A		
N1—H1···O2 ^{vi}	0.88	2.00	2.843 (5)	161		
C5—H5···O2 ^{viii}	0.95	2.50	3.400 (5)	158		
Symmetry codes: (vi) $-x+1$, $-y+2$, $-z$; (viii) x , $-y+3/2$, $z+1/2$.						

